Tutorial 4

In the following problems, V denotes a finite-dimensional inner product space.

1. Suppose $\mathbb{F}=\mathbb{R}$.
(a) Show that every self-adjoint $T \in \mathcal{L}(V)$ has a cube root, i.e. an operator $S \in \mathcal{L}(V)$ such that $S^{3}=T$.
(b) Find a linear operator $T \in \mathcal{L}(V)$ such that T does not have a square root, i.e. an operator $S \in \mathcal{L}(V)$ such that $T=S^{2}$.
2. Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$ is self-adjoint with eigenvalues $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ and corresponding eigenspaces $E_{\lambda_{1}}, \ldots, E_{\lambda_{k}}$. Prove there exists $a_{1}, \ldots, a_{k} \in \mathbb{R}$ such that

$$
T=a_{1} P_{E_{\lambda_{1}}}+\cdots+a_{k} P_{E_{\lambda_{k}}}
$$

3. Suppose $\mathbb{F}=\mathbb{C}$ and $T \in \mathcal{L}(V)$ is self-adjoint. Show that for all $c \in \mathbb{R}$ nonzero, $T+c i I$ is invertible.
4. Let $T \in \mathcal{L}(V)$ be self-adjoint and $v_{1}, v_{2} \in V$ be eigenvectors of T with distinct eigenvalues λ_{1} and λ_{2}, respectively.
(a) Show that $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.
(b) Show that $\left\langle v_{1}, v_{2}\right\rangle=0$. What can you deduce about the composition $P_{E_{\lambda_{1}}} P_{E_{\lambda_{2}}}$, where $E_{\lambda_{i}}$ is the eigenspace corresponding to λ_{i} ?
5. Let $T \in \mathcal{L}(V)$ be normal. Recall last week that we proved null $T^{*}=$ null T and range $T^{*}=$ range T.
(a) Show that null $T^{2}=$ null T.
(b) Show that range $T^{2}=$ range T.
6. We say a self-adjoint operator $T \in \mathcal{L}(V)$ is positive-definite if for all $v \in V$ nonzero, $\langle T(v), v\rangle>0$. Suppose $\mathbb{F}=\mathbb{R}$ and $T \in \mathcal{L}(V)$ is positive-definite.
(a) Show that T is invertible and T^{-1} is positive-definite.
(b) Show that $\langle u, v\rangle_{T}=\langle T(u), v\rangle$ defines an inner product on V.
(c) Suppose $S \in \mathcal{L}(V)$ is self-adjoint. Prove that $S T$ and $T S$ are diagonalizable.
